Análisis Colorimétrico de Papaya Andina Mediante Espacio de Color Lab
Resumen
Palabras clave
Texto completo:
PDFReferencias
Anwar, M., Mustapha, F., Ibrahim, N., Sutan, M. T. H., Halin, I. A., Bobby, F., Wan Abdurahman, S. N., & Hassim, M. I. (2019). Comparative study of composite defect and segmentation in RGB and lab colour space. International Journal of Advanced Trends in Computer Science and Engineering, 8(1.6 Special Issue). https://doi.org/10.30534/ijatcse/2019/6681.62019
Caglayan, C. (2019). Comparison of the Code-based or Tool-based Teaching of the Machine Learning Algorithm for the First-Time Learners. 1st International Informatics and Software Engineering Conference: Innovative Technologies for Digital Transformation, IISEC 2019 - Proceedings. https://doi.org/10.1109/UBMYK48245.2019.8965519
Cairone, F., Carradori, S., Locatelli, M., Casadei, M. A., & Cesa, S. (2020). Reflectance colorimetry: a mirror for food quality—a mini review. In European Food Research and Technology (Vol. 246, Issue 2). https://doi.org/10.1007/s00217-019-03345-6
Ministerio de Comercio Exterior y Turismo. (2020). Reporte de Comercio Regional Puno. Ministerio de Comercio Exterior y Turismo.
Naveenkumar, M., & Ayyasamy, V. (2016). OpenCV for Computer Vision Applications. Proceedings of National Conference on Big Data and Cloud Computing (NCBDC’15), March 2015, 52–56. https://www.researchgate.net/publication/301590571_OpenCV_for_Computer_Vision_Applications
Xyz, C. I. E. (1976). Lab color space. Converter.
DOI: http://dx.doi.org/10.35306/rev.%20cien.%20univ..v21i2.957
Enlaces de Referencia
- Por el momento, no existen enlaces de referencia
Copyright (c) 2022 Revista Científica Investigación Andina

This work is licensed under a Creative Commons Attribution 4.0 International License.