DESARROLLO DE UN SISTEMA OLFATIVO ELECTRÓNICO PARA EL DIAGNÓSTICO PRELIMINAR NO INVASIVO DE LA DIABETES
Resumen
Palabras clave
Texto completo:
PDFReferencias
Ampuero, S. & Bosset, J.O. (2003). The electronic nose applied to dairy products: a review. Sensors. Actuators B 94, 1–12.
Bogdan, S., Jerzy, W. & Naskalski, S. (2003). Analytical performance of glucometers used for routine glucose self-monitoring of diabetic patients. Clin. Chim.
Brynie, F.H., Hickman, F. & Brain, S. (2009). The science of the senses and how we process the world arround us. New York, United States: AMACOM.
Champe, P., Harvey, R. & Ferrier, D. (2005). Bioquímica (3a ed., pp 209- 229). México: McGrawHill.
Figaro Engineering Inc (1992). Technical Information for TGS2620. Recuperado de: http://www.produktinfo.conrad.com/datenblaetter/1200000-1299999/001273387-da-01-en-GASSENSOR_TGS_2620_FIGARO.pdf
Fleischer, M., Simon, E., Rumpel, E., Ulmer, H., Harbeck, M., Wandel, M., Fietzek, C., Weimer, U. & Meixner, H. (2002). Detection volatile compounds correlated to human diseases through breath analysis with chemical sensors. Sensors. Actuators 8(1), 245–249.
Hernández, A., Wang, J., Hu, G. & García, A. (2007). Discrimination of storage shelf-life for mandarin by electronic nose technique. LWT, 40(4), 681- 689.
Harris, M.I. (1993). Undiagnosed NIDDM: clinical and public health issues. Diabetes care, 16(2), 642-652.
He, F., Lidow, I.A., & Lidow, M.S. (2006). Inhalation model of cocaine exposure in mice: Neuroteratological effects. Neurotoxicol. Teratology. 28(2), 181-197. https://doi.org/10.1016/j.ntt.2005.12.001
ISSN 2521-2885 (impresa) ISSN 2616-6666 (en línea) Revista Científica Andina “Science & Humanities” Volumen 1, número 2 (2017)
International diabetes Federation. (2015). El Atlas de la diabetes de la FID, (7a ed.). Bruselas: Karacas Print. Recuperado de: www.diabetes atlas.org
Kateb, B., Ryan, M.A., Homer, M.L., Lara, L.M., Yin, Y., Higa, K. & Chen, M.Y. (2009). Sniffing out cancer using the JPL electronic nose: A pilot study of a novel approach to detection and differentiation of brain cancer. NeuroImage. 47, T5-9.
Kneepkens, C.M., Ferreira, C., Lepage, C. & Roy C.C. (1992). The hydrocarbon breath test in the study of lipid peroxidation: principles and practice. Clin Invest Med 15(1), 163–186).
Lee, J., Ngo, J., Blake, D., Meinardi, S., Pontello, A.M., Newcomb, R. & Galassetti, P.R. (2009). Improved predictive models for plasma glucose estimation from multi-linear regression analysis of exhaled volatile organic compounds. J. Appl. Physiol. 107, 155-160
Lourenҫo, C. & Turner, C. (2014). Breath analysis in disease diagnosis: Methodological considerations and applications. Metabolites. 4, 465–498.
Mendoza, J.J. (2016). Diseño de un sistema olfativo electrónico inalámbrico para determinar la tasa metabólica tisular por absorción de radiación lumínica (Tesis de maestría, Universida Andina Néstor Cáceres Velásquez, Juliaca, Perú). Base de datos repositorio UANCV.
Moreno, L., Cartas, R., Merkoçi, A., Alegret, S., del Valle, M., Leija, L., Hernandez, P.R. & Muñoz, R. (2006). Application of the wavelet transform coupled with artificial neural networks for the quantification purposes in a voltammetric electronic tongue. Sens. Actuat. B: Chem. 113, 487-499
Natale, C.D., Mantini,A., Macagnano, A., Antuzzi, D., Paolesse, R., & Amico, A.D. (1999). Electronic nose analysis of urine samples containing blood. Physiol. Meas 20(1), 377-384.
Organización Mundial de la Salud. (2016). Informe Mundial de la Diabetes. Ginebra: © World Health Organization. Recuperado de: www.who.int/diabetes/global-report/en/
Pavlou, A., Magan, N., Jones, J., Brown, J., Klatser, P. & Turner, A. (2004). Detection of Mycobacterium tuberculosis (TB) in vitro and in situ
Universidad Andina “Néstor Cáceres Velásquez”
using an electronic nose in combination with a neural network system. Biosens. Bioelectron. 20, 538-544.
Persaud, K., & Dodd, G. (1982). Analysis of discrimination mechanisms in the mammalian olfactory system using a model nose. Nature, 299(5881), 352-355. Publication link: ad6ff2e3-5c21-4e8d-adc1-9d9d925aa62f / PubMed:7110356
Prieto, N. (2012). Implementación de un sistema de evaluación sensorial electrónico para el control de calidad de vinos (Tesis doctoral, Universidad de Valladolid, España) recuperado de https://uvadoc.uva.es/bitstream/10324/1900/1/ TESIS241-130110.pdf
Shaw, J.G., Vaughan, A., Dent, A.G., O’Hare, P.E., Goh, F., Bowman, R.V., Fong, K.M., Ian, A. & Yang, I.A. (2004). Biomarkers of progression of chronic obstructive pulmonary disease (COPD). J. Thorac. 6, 1532–1547.
Van de Kant, K.D., Van der Sande, L.J., Jöbsis, Q., van Schayck, O.C. & Dompeling, E. (2012). Clinical use of exhaled volatile organic compounds in pulmonary diseases: A systematic review. Respir. 13, 117.
Wang, Z. & Wang, C. (2013). Is breath acetone a biomarker of diabetes? A historical review on breath acetone measurements. Journal of Breath Research, 7(8)
Wilson, A. D., & Baietto, M. (2009). Applications and advance in electronic-nose technologies, Sensors, 9(6).
Wilson, A. D., & Baietto, M. (2011). Advances in electronic-nose technologies developed for biomedical applications. Sensors, 11(1), 1105-1176.
Yadav, L. & Jayanand. (2014). Non-Invasive Biosensor for Diabetes Monitoring. World Journal of Medical sciencies, 11(1), 82-89.
Ziegler, C. & Göpel, W. (1998). Biosensor development. Curr. Opin. Chemis. Biol. 2, 585-591
DOI: http://dx.doi.org/10.35306/rcaep.v1i2.973
Enlaces de Referencia
- Por el momento, no existen enlaces de referencia
Copyright (c) 2022 Revista Científica Andina Science & Humanities